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Overview

Introductory remarks 

Basic crystallographic concepts 

Diffraction basics 

Dynamical electron scattering 

Basics of cross-correlations
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A dual view of the world
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S measuring stick S measuring stick
-> distance between trees: d = 1 [S]

-> distance between trees: d = 1/2 [S’]
S’

numerical value of d decreases when 
length of measuring stick increases

-> # trees per unit S: r = 2 [S-1]

S’
-> # trees per unit S’: r = 4 [S’-1]

numerical value of r increases when 
length of measuring stick increases

 -> d is contravariant quantity  -> r is covariant quantity
real or direct space reciprocal space



A dual view of the world

5real or direct space reciprocal space

distance between lattice planes:  
d [nm]

lattice plane “lineal density”:  
g [nm-1]

[nm-1] is also the unit of a spatial 
gradient (d/dx), and a gradient 
evokes the concept of “normal”…

we use distances to describe the  
coordinates of atoms, usually 
scaled in appropriate units

-> we need a tool to compute distances, 
     angles, etc…

-> we need a tool to compute normals  
     and lineal densities



Real or Direct Space
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3-D lattices are represented by a parallelepiped 
or unit cell; 

the edge lengths and angles between the 
edges make up the lattice parameters; 

There are seven different unit cell types, 
known as the crystal systems:

Parallelepiped :

“a 6-faced polyhedron 
all of whose faces 
are parallelograms 
lying in pairs of 
parallel planes”
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14 Bravais lattices
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Lattice geometry
Each lattice node can be reached by means of a translation 
from the origin. 

Such a translation vector is represented by: 

Translation (or lattice) vectors are integer linear 
combinations of the basis vectors of the Bravais lattice. 

Short hand notation:  [uvw]  (known as direction indices) 

Often, we will use the Einstein summation convention to 
represent vectors in a compact way.  A summation is 
implied over each subscript that occurs twice on the same 
side of the equation.  

Position vectors are written like this:               
the components are known as fractional coordinates.
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Lattice geometry
dot product definition: 

the length of a vector is then equal to:                        from which follows:  

so, how do we compute a dot product in practice ? 

The dot products between the basis vectors form a 3 by 3 matrix, known as the metric 
tensor:
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Using our short-hand notation, the length of a vector is then equal to: 

or, explicitly: 

similarly, the dot product between two vectors is:  

or, explicitly: 

for the angle between two vectors we have:

Lattice geometry
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Examples
for a tetragonal crystal with a= 1/2 nm and c=1 nm, compute the distance between 
the points (1/2,0,1/2) and (1/2,1/2,0).

first we need the metric tensor:
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For the same crystal, compute the angle between the directions [120] and [311]

Examples

alternative:
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Reciprocal Space

the co
varia

nt v
iew

Miller indices are determined as follows: 

determine the intercepts of the plane 
with the basis vectors; (if plane is 
parallel to one or more basis directions, 
take intersection to be at infinity) 

invert the intercepts; 

reduce to common integers and write 
between parentheses. 

so, the plane on the left is the (123) plane. 

general notation:      (hkl)



Reciprocal Space
In direct space, we represent directions as vectors.  It would be nice, if we could also 
represent planes by vectors (i.e., the normal to the plane).  It would be even better if the 
components of these normal vectors would be equal to the Miller indices! 

We know that an integer linear combination of basis vectors results in a vector that is not 
usually normal to a plane with the same integers as Miller indices. 

So, we define a second coordinate system, in such a way that the Miller indices of a plane 
are the components of the normal to that plane.  This new set of basis vectors is known as 
the reciprocal basis. 

The reciprocal basis vectors are defined by: 

Let’s take a closer look at those new basis vectors.



Reciprocal Space
The reciprocal basis vectors are defined as follows: 

It is easy to see that a* is orthogonal to b and c, 
and that a* .  a = 1. 

The reciprocal lattice is then the set of vectors of 
the type:



Reciprocal Space
One can show that the reciprocal lattice vectors have the following properties: 

the reciprocal lattice vector g, with components (h,k,l), is orthogonal to the plane with 
Miller indices (hkl); 

the reciprocal lattice vector g, with components (h,k,l), has as its length the inverse of 
the distance between the planes (hkl). 

We can use the metric tensor formalism to compute the interplanar spacing:

Define the reciprocal metric 
tensor as

lineal density



and we find: 

and for the angle between two reciprocal lattice vectors (i.e., plane 
normals) we have: 
 

One can show that the direct and reciprocal metric tensors are each 
others inverse, so once the direct metric tensor is known from the 
lattice parameters, a simple matrix inversion results in the 
reciprocal metric tensor g*

Reciprocal Space



Example
Compute the angle between the (120) and (311) plane 
normals for the tetragonal crystal from slide 10.
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Diffraction Experiments
The “unknowns” in crystallography are the lattice parameters, the atom coordinates, the 
crystal symmetry, and the lattice orientation w.r.t. an external reference frame. 

Diffraction techniques allow us to determine all these quantities. 

in Materials Science, we use photons, neutrons and electrons for diffraction experiments 

important distinction 1: neutrons and photons (x-rays) have similar wave lengths (0.1 
nm), electron wave lengths are 10-100 times shorter (1-10 pm); 

important distinction 2: electrons interact very strongly with matter, much stronger than 
neutrons and photons. 

Diffraction modalities are conveniently described in reciprocal space.
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The de Broglie relation
Louis de Broglie (1924) postulated a relation between a particle’s momentum and 
the wavelength of the quantum mechanical wave associated with that particle: 

This is known as the particle-wave duality. 

We introduce the wave vector k as a vector directed along the travel direction of the 
particle, and with length equal to the inverse of the wavelength.  The de Broglie 
relation is then rewritten as: 

Since the wave vector has dimensions of reciprocal length, it belongs to reciprocal 
space.  Also, since p and k are proportional, this means that, apart from a scaling 
factor, reciprocal space and momentum space are identical.
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Basic Diffraction Law
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Bragg’s Law

Necessary condition 
for diffraction to 
occur.



Classical expression for the electron 
wavelength follows from equating the 
kinetic energy to the potential energy due 
to a potential drop E: 

For low accelerating voltages, the non-
relativistic expression is quite accurate:

relativistic wavelength
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Electron Wave Length



X-rays & neutrons

electrons

Ewald Sphere Construction



EM modalities
Diffraction 

SEM: EBSD, ECP 

TEM: ZADP, CBED, PED, … 

Imaging 

SEM: SE, BSE, ISE, … 

TEM: DCI, HREM, … 

Spectroscopy (not considered here)

All of these can be described 
by a single theory, with adaptations 

for the various geometries…

Mansfield, Zhang

Michael, Britton

Kolb

Picard

Mills



Elastic: Bragg (dynamical), Rutherford (Z) 

(differential) scattering cross sections are known (f, Z2) 

Inelastic: collective excitations (phonons, plasmons, etc), 
core and outer-shell excitations 

These can be modeled, but often they are replaced by an 
effective (phenomenological) absorption potential 

Often, the models involve Monte Carlo simulations to 
account for the stochastic nature of these processes

EM modalities



Simplistic view

Sample

Channeling (dynamical)

Inelastic events  
(stochastic)

Electrons ALWAYS channel !
Whether or not we observe a diffraction 
pattern depends on how we interrogate  
the scattered plume of electrons…



QM governing equation
kinetic total potential

wave function

electrostatic lattice potential absorption potential

periodic  functions !

Relativistic wave number



Simplifying Assumptions
High Energy Approximation 

turns equation into first-order dif. eq. 

Perfect flat crystal 

eliminates the x,y derivatives, resulting 
in z-derivative only  

Column approximation  

electron does not leave a vertical column 
through the side-faces



Superposition of plane waves with 
wave vectors according to Bragg 
equation

Solution Methods
Superposition of plane waves with 
periodicity of lattice (Bloch waves)

Coupled Diff. Eqs. Eigenvalue problem



Darwin-Howie-Whelan equations

Coupled Diff. Eqs.

Beam g amplitude

Excitation error Interaction parameter



Darwin-Howie-Whelan equations

Coupled Diff. Eqs.

typically rewritten as a matrix equation

which has an exponential solution:

Structure Matrix

Scattering Matrix



Bloch wave eigenvalue equation

Bloch waves



Beryl

ZADP vs. beam tilt for Beryl, dynamical PED simulation (200 kV)

Perfect Crystal Examples

kinematical

parallel incident beam, focused in back focal plane

Ute Kolb



CBED simulation: separate ZADP simulation for each incident beam 
direction followed by combining all (shifted) zaps into a CBED pattern

Perfect Crystal Examples

converged incident beam, focused on sample

Si [111], 200 kV Si [230], 200 kV; 004 DF

John Mansfield 
Jiong Zhang



SEM diffraction modalities
Let’s consider BSEs only, created by 
Rutherford scattering events 

scattering cross section proportional to Z2 

Since scattering events are stochastic, we 
need to integrate the probabilities over depth 
inside the sample.

pixel

scintillator

e

P(k) =
X

i

Z2
i Di

z0

Z z0

0
dz | k(ri)|2



SEM diffraction modalities
P(k0) =

X

g

X

h

SghLgh,

Sgh ⌘
X

n

X

i2Sn

Z2
n e

�M(n)
h�g e2⇡i(h�g)·ri ;

Lgh ⌘
X

j

X

k

C(j)⇤
g ↵(j)⇤Ijk↵(k)C(k)

h .

Ijk =
1

z0(E)

Z z0(E)

0
�(E, z)e�2⇡(↵jk+i�jk) dz

from Monte Carlo simulations

The same formalism works for EBSD, 
ECP, and also the TEM-based ALCHEMI 
technique…



SEM diffraction modalities

[uvw]

BACKSCATTER EVENT

CHANNELING

ECP
simulated pattern blurred 

to resemble experimental patternGaSb [001], 20kV

focused incident beam, rocked inside cone with apex on sample

Yoosuf Picard



Electron Channeling Patterns (ECP), SEM, annular BSE detector

Perfect Crystal Examples

focused incident beam, rocked inside cone with apex on sample

BaMnO3, [00.1]

Experiment Simulation Experiment Simulation Experiment Simulation

10 12

14

16 18

11

13 15

17

Al, [111]



Perfect Crystal Examples

focused beam, scanned across region of interest

EBSD

Si [111]

Joe Michael



Defects in crystals
❖ A defect causes a local perturbation in the lattice 

potential, which manifests itself as a phase shift 
of the Fourier coefficients of the potential…

V (r) =
X

g

Vg e
ig·r

Vg ! Vg e
�i↵g(r) with ↵g(r) ⌘ 2⇡g ·R(r)

❖ The solution methods are still valid, but the 
sample is now “sliced” into thin slices, with 
different Fourier coefficients for each slice…



Defects in crystals: examples

✓
c

,�L, ⇢BF, ⇢i,ADF, ⇢o,ADFθc

θc

2θB

gO

    BF
detector

   ADF
detector

x
xm-xm x0

0

a

b BF disk

❖ converged  beam defect imaging, using a circular BF 
detector and an annular dark field detector, in STEM 
mode

❖ produces high quality defect contrast images near zone 
axis orientations without the strong dynamical 
background contrast that typically makes zone axis 
orientations unfavorable for defect imaging

focused beam, annular detector(s)

STEM-DCI



163 222

327 546

771 1118

CL

Sim. Exp.

BF ADF

Sim. Exp. Sim. Exp.

BF ADF

Sim. Exp.

[12̄.0]

hcp Ti+6wt%Al 
200 kV

Zone Axis 
defect imaging

Michael Mills



Defects in crystals: examples
SEM-ECCI

focused beam, annular BSE detector

❖ Using an ECP, the sample is tilted to a two-beam 
orientation (on the edge of a Kikuchi band)

❖ zooming in then produces defect contrast images 
for near-surface or surface penetrating defects

❖ Contrast rules (visibility criteria) are similar to 
those used for TEM and STEM-DCI

❖ Can be used for large area defect studies
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Screw u = b = [011] Edge u =  [011]; b = [100]
(a) (b)

Yoosuf Picard



Cross-Correlations
correlation is a measure for how similar two signals are and is 
similar to a convolution: 
 
 
 

can be defined in a number of ways, but from a computational 
point of view the Fourier transform of the signals is used.

C = F�1 [F [f ]F⇤[g]]

(f ⌦ g)[⌧ ] =

Z
f(x)g(⌧ � x)dx

C(⌧) = (f ? g)[⌧ ] =

Z
f(x)g(⌧ + x)dx



Cross-Correlations

Where is ?
Cross-correlation

Ben Britton



Questions ?


