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Overview

O ntroductory remarks

O Basie erystallographic concepts
O Diffractiown basics

O pynamical electron scattering

O Bastes of cross-correlations



A dual view of the world

< | measuring stick

0 S 1

-> distance between trees: d = 1 |S]
|I|I|I|I|I|I|I|II_
O S, 1

-> distance between trees: d =1/2 [S']

numerical value of d decreases when
length of measuring stick increases

-> d is contravariant quantity
real or direct space

4*} measuring stick

-> # trees per unit S: r=2 [S']

ﬁ
S’
-> # trees per unit S’: r=4 [$"1]

numerical value of r increases when
length of measuring stick increases

-> r Is covariant quantity

reciprocal space



A dual view of the world

distance between lattice planes:
d [nm]

we use distances to describe the

coordinates of atoms, usually
scaled in appropriate units

-> we need a tool to compute distances,

angles, etc...

real or direct space

lattice plane “lineal density”:
g [nm™']

[nm] is also the unit of a spatial

gradient (d/dx), and a gradient
evokes the concept of “normal”...

-> we need a tool to compute normals
and lineal densities

reciprocal space



Real or Direct Space

O =-D lattices are represented bgj a parallelepiped
or untlt cell;

O the edge lengths and angles between the
edges make up the lattice parameters;

{a'? b? C, (v, .B:J ﬁf}

O There are seven different unit cell types,
Rinoww as the crystal systems:
Parallelepiped :
{a,b,c,a, (3,7} a#b+# c,a# 3+ triclinic or anorthic (a);

‘a 6-faced polyhedron 14 p . %? 51 aFbFtceBFET monoclinic (m);
all of whose taces {a,a,c, 2, 2,251 a=b+#c hexagonal (h);
are parallelograms 2273 N
lying in pairs of la,a,a,0,,a} a=b=cia# 3 rhombohedral (R);
parallel planes” 1a,b,¢, 5,5, 3 a#b#c orthorhombic (0);
la,a,¢,5,5,5} a=b#c tetragonal (t);
la,a,0,5, 5,5} a=b=c cubic (¢).



14 Bravais lattices




Lattice geometry

O Each lattice node can be reached by means of a translation
from the origin.

0 Swch a translation vector Ls represcwteol bg: t = ua -+ “Ub + wc

O Tvanslation (or lattice) vectors are integer Linear
combinations of the basis vectors of the Bravais Lattice.

0O Short hand notation: [uvw] (Rnoww as direction Lndices)

3
O LLL t Lnstel t tlon t _ . —
O often, we wi use he Blnstein summation convention to t — E W;a; = u;Aa,
YEpPrésent vectors L a compact wa Y. A sumemeation LS —
r'd ’ r'd ’ .II":
Lmplied over each subscript that occurs twice on the same
sioe of the equatiow.

3
the components are knowwn as fractional coordinates. 1

£



Lattice geometry

dot product definition:

P -q= |pl|lg|cos?.

the length of a vector Ls then equal to:  p-p = bl from which follows: [p| =P P

so, how do we compute a dot product L pmc’ciae ?

3

pi(a; - ey }Pj

i

1=1

o,

i ™1
r
F

|_"l|.

|I3| = »/Faﬂi " Piay = \/Fi(ﬂi : Elj}}'?-‘j — \

The dot products between the basis vectors form a 3 by 3 matrix, kRnoww as the metric
tensor:

- a-a a-b a-c | T a? abcosy accosf3
gij=| b-a b-b b-c | =| abcosy b? bc cos o
' c-a c¢-b c-c accos3 bccosa c? )



Lattice geometry

Using our short-hand wnotation, the length of a vector is thew equal to: P| = VPi9iiP;

oy, e)q:licitl,g:
sLmLLarLg, the dot product between two vectors LS:
oY, e)qaLLoLtLg:

for the angle between two vectors we have:

0 = cos™ ! (p-q) — cos & (
Pllq|

P-qQ=p:a;-q;a; = P;g;;4;

Pidi; 44 )
VPi9iiPi\/419i59;



Examples

O for a tetragonal crystal with a= 1/2 nm and c=1 nm, compute the distance between
the points (1/2,0,1/2) and (1/2,1/2,0).

1 _ -
, El 0 0O a’ abcosvy accosf3
first we need the metric tensor: g — 0 1 ab cos B2 be cOS O
1] A4
0 E’} 1 accosfl bccosa c? |

Answer : The distance between two points is equal to the length of the vector con-

necting them, in this case (% — %,D — %% — D) = ('D, —%, %) Using the tetragonal

metric tensor derived previously, we find for the length of this vector:

- 1

) ) =0 0 0

—11 4 { 4

\ o o 1 1
. - 0

_ 0 —11 =1 | = ﬁﬂ.fﬂ.
\ 2 2 ? 4

]
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Examples

For the same crystal, compute the angle between the directions [120] and [211]

Answer : The dot product is found from the expression for the metric tensor, as follows:

"2 0 073" 1] -
trizo) - tp1y=[120]| 0 % 0 1 [=[120]| 3 =1nmﬁ'.
0 0 1 1 1

The angle is found by dividing the dot product by the lengths of the vectors, |[120]]? =

% nm? and [[311]|? = % nm?, from which we find

-+ 8 = 53.30°.

cosf =

5
1 5
T
4 4
altermative: Answer : Consider the following formal relation:
P PP P-9
lp q)= .
('51)( ) ('51'[3’ '51"31)

The resulting 2 x 2 matrix conrains all three dot products needed for the computation
of the angle 8, and only one set of matrix multiplications is needed. We can apply this

short cut to the previous example:

1 2 0
3 1 1

|_I.
.n.|ﬁ_.n.ll;n
HH‘I‘-'-'—-'.".P..
i

e | £ | 1

|
f-"_"-x

1 3
2 1
0 1

o T N [
O ] =
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Reciprocal Space

O Miller indices are determined as follows:

O odetermine the tntercepts of the plane
with the basis vectors; (Lf plane is
parallel to one or more basis directions,
take Lntersection to be at Lwﬁwitg)

O uavert the Lwtercepts;

O reduce to common tntegers and write
between parentheses.

O so, the plane on the left is the (123) plane.

O general notation:  (hkl)



Reciprocal Space

O n direct space, we represent directions as vectors. It would be nice, Lf we could also
represent planes bg) vectors (L.e., the normal to the plane). 1t would be evew better Lf the
components of these mormal vectors would be equal to the Miller tindices!

O we know that an tnteger Linear combination of basis vectors results i a vector that is not
usually normal to a plane with the same tntegers as Miller ndices.

O So, we define a second coordinate system, Ln such a way that the Miller indices of a plane
are the components of the normal to that pLa we. This new set of basiLs vectors Ls knowwn as
the reciprocaL basts.

O The reciprocal basis vectors ave defined by:  a; - a’: = 5”

) Let’s take a closer Look at those wew bastls vectors.



Reciprocal Space

O The reciprocal basis vectors are defined as follows: 2 bxc
a-(bxc)
C X a
b* = :
a-(bxc)
o ax b
O It s easy to see that a* is orthogonal to b and C, ~ a-(bxc)

and thata*. a = 1.

O The rveciprocal Lattice Ls thew the set of vectors of

the tgpez o

g=ha" +kb* +lc* =) gal = ga;
1=1



Reciprocal Space

0O owne can show that the reciprocal Lattice vectors have the following properties:

O the reciprocal lattice vector g, with components (h,k,L), Ls orthogonal to the plane with
Mtiller tndices (hkel);

O the reciprocal Lattice vector g, with components (h,k,L), has as its length the tnverse of
the distance between the planes (hkl). |
8hki| =

dp i

O We can use the metric tensor formalism to compute the tnterplanar spaciwg:

1
= gl = V&8 = \/(9:a]) - (9;8}) = /gl
dhk
Define the reciprocal metric — o

tensor as J 1] — - aj



Reciprocal Space

O and we ﬁvwl: 1

=lgl=Vvg-g= \/ﬂiﬂfjgj
Akt

O and for the angle between two reciprocal Lattice vectors (i.e., plane
normals) we have:

1 figjjgj
V95 1i\/99:;9;

f = cos™

0O owne can show that the direct and reciprocal metric temsors are each
others tnverse, so once the direct metric tensor ts Rnown from the
Lattice parameters, a simple matrix tnversion results tn the
reciprocal metric tensor g™



Example

O Compute the angle between the (120) and (311) plane
normals for the tetragonal crystal from slide 10.
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Diffraction Experiments

’

O The “unknowns” Ln orgs’ca LLograph Y are the Lattice parameters, the atom coordinates, the
orgstaL sY mmetrg, and the Lattice ortentation w.r.t. an external referewae {m MLE.

O Diffraction technigues allow us to determine all these gquantities.
O in Materials Science, we use photons, neutrons and electrons for diffraction experiments

O ilmportant distinction 1: neutrons and photons (x-ra Yys) have stmilar wave lengths (0.1
nm), electron wave lengths are 10-100 times shorter (1-10 pm);

O Lmwmportant distinction 2: electrons interact very strongly with matter, much stronger than
neutrons anad photons.

O Diffraction wmodalities are cov»\/ewiew’cl,g described Ln reclprocaL space.

19



The de Broglie relation

O Lowtis de Broglie (1924) postulated a relation between a particle’s momentum anol
the wavelength of the quantum wmechanteal wave associated with that particle: h

A= —
O This Ls knoww as the particle-wave duality. P
O we untroduce the wave vector K as a vector divected along the travel direction of the

particle, and with length equal to the tnverse of the wavelength. The de Broglie
relation is thew rewritten as: P = hk

O Since the wave vector has dimenstons of reciprocal length, it belongs to reciprocal

space. Also, since p and K are proportional, this means that, apart from a scaling
factor, reciprocal space ano momentum space are Loentical.

20



Basic Diffraction

=
k’ .4
Bragg’s Law o
<
th;ﬂ sin @ =

k' = k'l'g (hkI)
a b

Necessary condition Fig. 2.2. a) Geometrical construction leading to the direct space Bragg equation; b) the incident
for diffraction to and diffracted directions and the plane normal must lie 1n a planar section through a conical

surface with top 1n the plane.
OCCUr.

21



Electron Wave Len

O classteal expression for the electron
wavelength follows from equating the

gth

relativistic wavelength

kinetic energy to the potential energy due \ — h
to a potethaL Dlrop E: \/2’”’10 EE(l | gmﬂ 2 E)
ncC
W h1,22639
\/QTH'UEE v L Table 2.2. Relativistic acceleration potential U, electron wavelength \, wavenumber

] ] t, L th Ko = +, mass ratio -y = m/my, relative velocity 3 = 2, and interaction constant o
Q For low accelera lng voltages, the wow- Jor various acceleration voltages E.
relativistie eXpression Ls qulite accurate: h
E &V) U(V) AX(pm) Ko@mm™') m/mo B=v/c o 'nm ")

100 109,784  3.701 270.165 1.196  0.548 0.009244
E (Volt)  An- (pm) A (pm) 120 134,090  3.349 298577 1235  0.587 0.008638
200 239.139  2.508 398734 1391  0.695 0.007288
100 122.64 122.63 300 388,062  1.969 507.937 1587  0.777 0.006526
500 54 84 54 83 400 556,556  1.644 608293 1.783  0.828 0.006121
- 800 1426224  1.027 973.761 2566  0.921 0.005503
1,000 38.78 38.76 1,000 1,978475 0872  1,146895 2957  0.941 0.005385
>.000 17.34  17.30 1250 2778867 0736 1359228 3446 0957  0.005296
10,000 12.26 12.20 2000 5913900 0504 1982876 4914  0.979 0.005176
70.000 67 ] 50 3000 11,806,277 0357 2801.657 6871  0.989 0.005122
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Ewald Sphere Construction

Fig. 2.4. Ewald sphere construction.

X-rays § neutrons

00 keV
L . HT & * W y— ¥ ¥ L ] ¥ & » L L 1 MEV

¥ W L

L L L] L] L] L] . . L L L L ] L ] L L L » » » » » » » L] L] L L L L] L] n n n

Fig. 2.7. Ewald sphere drawn to scale for the reciprocal lattice of a square crystal with lattice
parameter 0.4 nm, and a 200 keV and 1 MeV 1incident electron beam.

electrons

Table 2.3. Diffraction angles 26 for the (200), (400), and (600) lattice planes in
Aluminum for £ = 200 kV and E = 1 MV in mrad (degrees). The last column shows
the corresponding angles for x-ray diffraction using Cu-IK,, radiation with
A = 0.1542838 nm; the (600) planes do not give rise to a diffracted beam for this
wavelength.

Plane 20500 KV 201 MeV Cu-K, x-rays

(200)  12.38(0.71)  4.31(0.25)  781.31 (44.76)
(400) 24.77(1.42)  8.61(0.49) 1,731.52(99.21)
(600) 37.16(2.13)  12.92(0.74) -




EM modalities

O puffraction /

0] sSeM: esh, ECP/
/

0 TeEM: ZADP, CBED, PED, ...
All of these can be described

U tmaging by a single theory, with adaptations
0 SEM: SE, BSE, ISE, ... for the various geometries...

TEM:DCI, HREM, ...
O :DCI, +

O Spectroscopy (not constdered here)



EM modalities

O Elastic: Bragg (dywnamical), Rutherford (Z)

O (differential) scattering cross sections are known (f, Z2)

O (nelastic: collective excitations (phonons, plasmons, ete),
core and outer-shell excitations

O These can be modeled, but often they are replaced by an
effective (phenomenological) absorption potential

O Often, the models tnvolve Monte Carlo stmulations to
account for the stochastie nature of these processes



Simplistic view

e % Inelastic events
/ (stochastic)
LU Electrons ALWAYS channel !

Whether or not we observe a diffraction
pattern depends on how we interrogate
the scattered plume of electrons...




QM governing equation

kinetic  total potential

AV 4+ A7 k2 W = —Ax? [U +iU" W,

wave function

electrostatic lattice potential  absorption potential

periodic functions ! 2

. me -
\ Ulr) = = Zpgﬁﬂ gr.
ﬁ g=0
2imedr i 2me L oo
ko = [I'(r) = ~ D Wge mET,
g

‘h\.
Relativistic wave number

U, = +4V;



Simplifying Assumptions
O +High Bnergy Approxtmation

O turns equation into first-order dif. eq.
O Perfect flat crystal

O eliminates the x,y dertvatives, resulting
L z-derivative only

0 Columwn approximatiow

O electron does wnot Leave a vertieal column
through the stoe-faces



Solution Methods

O Superposition of plane waves with O Superposition of plane waves with
wave vectors according to Bragg pertodicity of Lattice (Bloch waves)
equation

1[“:["] — _t.l,gﬁfﬂ'rri[;l{[]—l—g:]-l' -'I-'-[:I'} - E{I’}EEWik.r __ z GgEEWiIZk_I_g:I.r
L =

Coupled Diff. Eqs. Eigenvalue problem



Coupled Dift. Eqgs.

O Parwin-Howie-wWhelawn equations
Beam g amplitude

0,

—dﬁ!g — 2MSg gy = 1T :
iy g I'g — 1/
g.l'

_E-"
(M
f

1
dz (g —g

Excitation error Interaction parameter
1 | el (extinction distance) = — i — Ug :
— - 1- g ko + g|cos a
— - i— r
dg &g {o | i

absorption length) ' —  — .
{ : gth) k! kg + g| cos a



Coupled Diff. Eqs.

O Parwin-Howie-wWhelawn equations

ds

typically rewritten as a matrix equation — ={AS

(lz

Structure Matrix

which has an exponential solution: S{zp)

5 E‘EE
’TISE E—I“TE

Hg—g

— ¢"4#08(0) = SS(0)

d

Scattering Matrix



Bloch waves

O Bloch wave eigenvalue equation  2kosgCY + > Ug_nCy) = 2k,7CY)

h=g
iU U_g+iU', ... U_n+ilU’y c*%,ﬁ'; C%'j;
T 7! . o B T sy 7! 7 ]
Ug +1Ug  2kpsg +1Ug ... Ug_n+1U;_y Cg e Cy
Up + iU}, Up—_g + 15{1 o 2kosn + U] gl'ilil' GE:I



Perfect Crystal Examples

O ZADP vs. beam tilt for Beryl, ol Yna mical PED stmulation (200 kRV)

Beryl

kinematical

parallel incident beam, focused in back focal plane



Perfect Crystal Examples

0 CRBED simulation: separate ZADP stmulation for each tncident beam
direction followed bg combining all (shifted) zaps into a CBED pattern
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Si [111], 200 kV Si [230], 200 kV; 004 DF

converged incident beam, focused on sample



SEM diffraction modalities

] Let’s consloer BSEsS only, created bg 5
Rutherford scattering events

scintillator

O scattering cross section proportional to Z.2

O Since scattering events are stochastic, we
need to integrate the probabilities over depth
insioe the sample.

pixel




SEM diffraction modalities

Sg Lg ? °
LL e The same formalism works for EBSD,
Sen=3">" 22 S, - B). ECP, and also the TEM-based ALCHEMI

P k technique...
Len = L LC’g)*a(J)*Ijka(k)C}(I ).
k

J

okl .
Tk = _ / X(E Z)e 2 (@rtibfir) 4
0

!

from Monte Carlo simulations



SEM diffraction modalities?""wp.-e
Arg

b AT

CHANNELING
[uvw]
BACKSCATTER EVENT
ECP

simulated pattern blurred
G aS b [001 ] ? 20 kV to resemble experimental pattern

focused incident beam, rocked inside cone with apex on sample



Perfect Crystal Examples

O Electron Channeling Patterns (ECP), SEM, annular BSE detector

Experiment Simulation Experiment Simulation Experiment Simulation

BaMnOs, [00.1]
Al, [111]
focused incident beam, rocked inside cone with apex on sample



O¢ a,.
Mle hael

B ST W o B E N Bi e T T B SRR S -
- willls gF ey e g WP WAL o™ ol S i , W %L 8

i
%
e

EBSD

focused beam, scanned across region of interest



Defects in crystals

* A defect causes a local perturbation in the lattice
potential, which manifests itself as a phase shift
of the Fourier coefficients of the potential...

V(ir)=) Vge8™
g
Ve = Vee %50 with  ag(r) = 27g - R(r)

+ The solution methods are still valid, but the
sample is now “sliced” into thin slices, with
different Fourier coefficients for each slice...



Defects in crystals: examples

STEM-DC(I

. . . . 6 0 7)‘[/7 s M1, A ? A
“ converged beam defect imaging, using a circular BF @ - PBE, Pi,ADF; Po, ADF

detector and an annular dark field detector, in STEM
mode

« produces high quality defect contrast images near zone

axis orientations without the strong dynamical

background contrast that typically makes zone axis ‘.(‘/'\,.) b T

orientations unfavorable for defect imaging <>
ADF
a deggtor detector

focused beam, annular detector(s)



Sim.

CL

163

327

771

BF

Exp.

Sim.

ADF

Exp.

222

546

1118

Sim.

BF

Exp.

Sim.

ADF

Exp.

M;
Cuﬁﬂhglu‘ti'
Is

Zone AXxis
defect imaging

hcp Ti+6wt%Al

200 kV
12.0]



Defects in crystals: examples

SEM-ECCI

Using an ECP, the sample is tilted to a two-beam
orientation (on the edge of a Kikuchi band)

zooming in then produces defect contrast images
for near-surface or surface penetrating defects

Contrast rules (visibility criteria) are similar to
those used for TEM and STEM-DCI

Can be used for large area defect studies

focused beam, annular BSE detector

Experimental Simulated
A g=(022)y .
= = = =
= S x = S
= = o1 = =
[101]
[011]
1um
B g=(022)4
9=(022)—»]
D g=(004)%




(a)

Screwu=Db =[011]

(b)

Edge u= [011]; b = [100]




Cross-Correlations

O corvelation s a measure for how similar two stgnals are and Ls
stmilar to a convolution:

o9l = [ fa)gtr -
C(r) = (f+g)ir) = [ fag(r +a)d

O cawn be defined tn a number of wa Ys, but from a compu’catiowat
polnt of view the Fourier transform of the signals is used.

C =F [FLf)F 9]



Cross-correlation

Where is 7., ?






